Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2308: 263-278, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34057729

RESUMO

The bone marrow (BM) is a complex microenvironment in which hematopoietic stem and progenitor cells (HSPCs) interact with multiple cell types that regulate their quiescence, growth, and differentiation. These cells constitute local niches where HSPCs are confined and subjected to specific set of physical and biochemical cues. Endothelial cells forming the walls of blood capillaries have been shown to establish a vascular niche, whereas osteoblasts lying along the bone matrix organize the endosteal niche with distinct and specific impact on HSPC fate. The observation of the interaction of HSPCs with niche cells, and the investigation of its impact on HSPCs behavior in vivo is hindered by the opacity of the bone matrix. Therefore, various experimental strategies have been devised to reconstitute in vitro the interaction of HSPCs with distinct sets of BM-derived cells. In this chapter, we present a method to manufacture a pseudo BM-on-a-chip with separated compartments mimicking the vascular and the endosteal niches. Such a configuration with connected but distant compartments allowed the investigation of the specific contribution of each niche to the regulation of HSPC behavior. We describe the microfabrication of the chip with a maskless photolithography method that allows the iterative improvement of the geometric design of the chip in order to optimize the adaptation of the multicellular architecture to the specific aim of the study. We also describe the loading and culture of the various cell types in each compartment.


Assuntos
Células da Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Nicho de Células-Tronco , Engenharia Tecidual/instrumentação , Diferenciação Celular , Linhagem Celular , Técnicas de Cocultura , Células Endoteliais/fisiologia , Desenho de Equipamento , Humanos , Hidrogéis , Osteoblastos/fisiologia , Fenótipo
2.
Nature ; 589(7842): 448-455, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328637

RESUMO

FAT1, which encodes a protocadherin, is one of the most frequently mutated genes in human cancers1-5. However, the role and the molecular mechanisms by which FAT1 mutations control tumour initiation and progression are poorly understood. Here, using mouse models of skin squamous cell carcinoma and lung tumours, we found that deletion of Fat1 accelerates tumour initiation and malignant progression and promotes a hybrid epithelial-to-mesenchymal transition (EMT) phenotype. We also found this hybrid EMT state in FAT1-mutated human squamous cell carcinomas. Skin squamous cell carcinomas in which Fat1 was deleted presented increased tumour stemness and spontaneous metastasis. We performed transcriptional and chromatin profiling combined with proteomic analyses and mechanistic studies, which revealed that loss of function of FAT1 activates a CAMK2-CD44-SRC axis that promotes YAP1 nuclear translocation and ZEB1 expression that stimulates the mesenchymal state. This loss of function also inactivates EZH2, promoting SOX2 expression, which sustains the epithelial state. Our comprehensive analysis identified drug resistance and vulnerabilities in FAT1-deficient tumours, which have important implications for cancer therapy. Our studies reveal that, in mouse and human squamous cell carcinoma, loss of function of FAT1 promotes tumour initiation, progression, invasiveness, stemness and metastasis through the induction of a hybrid EMT state.


Assuntos
Caderinas/deficiência , Transição Epitelial-Mesenquimal/genética , Deleção de Genes , Metástase Neoplásica/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Progressão da Doença , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Metástase Neoplásica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Proteômica , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Quinases da Família src/metabolismo
3.
Hum Mol Genet ; 25(1): 146-57, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26604147

RESUMO

Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder, characterized by normal post-natal development followed by a sudden deceleration in brain growth with progressive loss of acquired motor and language skills, stereotypic hand movements and severe cognitive impairment. Mutations in the methyl-CpG-binding protein 2 (MECP2) cause more than 95% of classic cases. Recently, it has been shown that the loss of Mecp2 from glia negatively influences neurons in a non-cell-autonomous fashion, and that in Mecp2-null mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern and greatly prolonged lifespan compared with globally null mice. We now report that microtubule (MT)-dependent vesicle transport is altered in Mecp2-deficient astrocytes from newborn Mecp2-deficient mice compared with control wild-type littermates. Similar observation has been made in human MECP2 p.Arg294* iPSC-derived astrocytes. Importantly, administration of Epothilone D, a brain-penetrant MT-stabilizing natural product, was found to restore MT dynamics in Mecp2-deficient astrocytes and in MECP2 p.Arg294* iPSC-derived astrocytes in vitro. Finally, we report that relatively low weekly doses of Epothilone D also partially reversed the impaired exploratory behavior in Mecp2(308/y) male mice. These findings represent a first step toward the validation of an innovative treatment for RTT.


Assuntos
Astrócitos/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Microtúbulos/metabolismo , Vesículas Transportadoras/metabolismo , Acetilação , Animais , Arginina/metabolismo , Astrócitos/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Epotilonas/farmacologia , Desacetilase 6 de Histona , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Síndrome de Rett/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...